Sets – Exercises

Exercises for Chapter 1 of Steinhart, E. (2009) *More Precisely: The Math You Need to Do Philosophy*. Broadview Press. Copyright (C) 2009 Eric Steinhart. Non-commercial educational use encouraged! All others uses prohibited. (Version 1)

1. Collections

Write out the following:

The set of A: The set of the set of A:

The set of A and B: The set of both A and the set of A:

The set of A, B, and C:

If x is $\{A, B\}$ and y is $\{C, D\}$ then write out:

$$\{x\} = \{x, y\} =$$

$$\{\{x\}\} = \{\{x\}, y\} =$$

Answer the following (true or false):

$$1 = \{1\}?$$
 $\{1\} = \{\{1\}\}?$

$$\{1, 1\} = \{1, \{1\}\}\$$
? $\{1, B, 2\} = \{2, 1, B\}$?

$$\{A, A\} = \{A\}$$
? $\{A, A\} = \{\{A\}\}$?

2. Membership

True or false:

Is
$$A \in \{A\}$$
? Is $\{A\} \in \{\{A\}\}$?

Is
$$A \in \{\{A\}\}$$
? Is $\{B\} \in \{\{A\}, \{B\}\}$?

Is
$$\{A, B\} \in \{A, B\}$$
? Is $\{\} \in \{A\}$?

3. Set Builders

Using the set $Y = \{1, A, 2, B, 3, C\}$, write out the following sets:

$$\{ x \in Y \mid x \text{ is a letter} \} =$$

 $\{ x \in Y \mid x \text{ is a number} \} =$

If $X = \{A, B, C, 1, 2, 3\}, Y = \{A, B, C\}, \text{ and } Z = \{1, 2, 3\}, \text{ then write:}$

 ${x \in X \mid x \text{ is also in } Y} =$

 ${x \in X \mid x \in Z} =$

4. Unions

Write out:

 $\{a, b\} \cup \{1\} =$

 ${a,b} \cup {c,d} =$

 $\{a\} \cup \{b\} \cup \{c\} =$

 $\{\{A\}\} \cup \{\{B\}\} =$

 $\{a\} \cup \{\{1\}\} =$

 $\{A\} \cup \{\{A\}\} =$

5. Intersections

 ${a,b} \cap {a} =$

 ${a,b} \cap {\{a\}\}} =$

 $\{1, 2, 3\} \cap \{a, b\} =$

 $\{\{\},A\}\cap\{A,\{\}\}=$

 $\{\{\}, 2, 3\} \cap \{\{\}\} =$

 $\{a,b,c\} \cap \{b,c,d\} =$

6. Subsets

- $\{A, B\}$ is a subset of $\{A, B, C\}$?
- $\{A\}$ is a subset of $\{A, B\}$?

A is a subset of $\{A\}$?

- $\{A\}$ is a subset of $\{\{A\}\}$?
- $\{A\}$ is a subset of $\{A, \{A\}\}$?
- $\{A, B\}$ is a subset of $\{A, B\}$?

Write the subsets of $\{1, 2\}$:

7. Rank

Assume that A, B, and C are individuals on rank 0.

rank of $\{A\}$ =

rank of $\{\{\{B\}\}, \{C\}\} =$

rank of $\{A, \{A\}\} =$

rank of $\{\{A, B\}, \{C\}\} =$

8. Power Sets

The power set of $\{1, A\}$ is:

The power set of $\{Q\}$ is:

The power set of $\{\{\}\}$ is:

Write the power set of the power set of $\{A\}$:

9. Some Transformations of Sets

Suppose $X = \{A, B, C\}$.

Write the set that results from replacing each $x \in X$ with $\{x\}$:

Suppose $X = \{\{\{A\}, \{B\}\}, \{\{C\}\}\}.$

Write the set that results from replacing each $x \in X$ with $\cup x$:

10. Diagramming Sets

Use names or dots for sets and an arrow from x to y iff x is a member of y.

Draw the diagram for $\{A, B\}$.

Draw the diagram for $\{A, \{A\}\}$

Draw	the	diagram	for	$\{\{A\}.$	{B}	} }.
D14"		aragram	101	((* -) ,	(-)	, , .

Draw the diagram for $\{\{\}, \{\{\}\}\}\$.

11. Sets and Selections

Fill in the table with 0s and 1s to express all selections. Write the selected set in the rightmost cell of each row.

{}	A	{A}	

Now write the set of all sets from the rightmost cell of each row:

12. Numbers as Sets
Using the idea that n is the set of all numbers less than n , write out:
0
1
2
3
4
12 D' ' N I C (
13. Diagramming Numbers as Sets
Draw a diagram for each of the numbers in exercise 12 above:
0
1
1
2
3
4

14. Iteration versus Accumulation

An *iterative hierarchy* says that every next level is just the power set of the previous level.

Consider this iterative hierarchy:

$$H(0) = \{A\};$$
 $H(n+1) = pow H(n).$

Write out levels H(0), H(1), and H(2) of this iterative hierarchy:

$$H(0) =$$

$$H(1) =$$

$$H(2) =$$

A *cumulative hierarchy* says that every next level is the power set of the previous level unioned with the previous level.

Consider this cumulative hierarchy:

$$K(0) = \{A\}; K(n+1) = \text{pow } K(n) \cup K(n).$$

Write out levels K(0), K(1), and K(2) of this cumulative hierarchy:

$$K(0) =$$

$$K(1) =$$

Write out pow K(1). (How can exercise 11 help you?)

$$K(2) =$$

Give an example of an object that appears on K(1) but not on H(1):

List all objects that appear on K(2) but not on H(2):

Explain why K(n+1) is richer than H(n+1) for n > 0:

15. Ordered Pairs

Diagram (Sue, Bob)

Diagram (Bob, Bob)

Diagram (Sue, {Sue})

Diagram ({}, {{}})

16. Cartesian Products

Write the Cartesian Product $\{A, B\} \times \{1, 2\}$.

Write the Cartesian Product {Abe, Bob, Sue} × {Happy, Sad}.